高松山浅成低温热液金矿床同位素地球化学特征及成因分析Isotopic Geochemistry and Its Implication to the Genesis of Gaosongshan Epithermal Gold Deposit in Heilongjiang Province,China
郑硌;顾雪祥;章永梅;刘瑞萍;
摘要(Abstract):
高松山浅成低温热液金矿床,赋存于下白垩统安山岩等中酸性火山岩中。矿体受围岩中断裂破碎带的控制,呈脉状产出。同位素地球化学研究显示,该矿床成矿溶液系大气降水补给的地下热水;金属组分来自含矿的火山岩内;矿石铅H-H单阶段模式年龄平均值为73.5 Ma,成矿时代属燕山晚期。矿床的形成与地下热水的活动密切相关。当大气降水下渗,经加热并持续溶滤火山岩层中的成矿物质,最终构成含矿地下水热液。含矿地下水热液在环流过程中进入减压带—断裂破碎带时,由于温度、压力、Eh值和pH值等物理化学条件的改变而使热液发生卸载,矿质得以沉淀析出。
关键词(KeyWords): 同位素地球化学;成因分析;浅成低温热液金矿床;高松山;黑龙江
基金项目(Foundation): 国家自然科学基金项目(批准号:40930423;40873036);; 国家重点基础研究发展计划(资助号:2009CB421003-01);; 高等学校学科创新引智计划(资助号:B07011)
作者(Authors): 郑硌;顾雪祥;章永梅;刘瑞萍;
DOI: 10.16461/j.cnki.1000-4734.2013.01.008
参考文献(References):
- [1]段晓君,李亚军,曲畅.高松山金矿地质特征及找矿标志[J].中国西部科技,2009,8(17):7-10.
- [2]边红业,陈满,刘洪利,等.黑龙江省逊克县高松山金矿床地质特征及成因分析[J].地质与资源,2009,18(2):91-95.
- [3]尹西君,连永牢,潘超.黑龙江省逊克县高松山金矿区岩石地球化学特征[J].黄金,2010,31(10):22-26.
- [4]刘桂阁,王恩德,常春郊,等.黑龙江省逊克县高松山金矿成因探讨[J].有色矿冶,2006,22(4):1-4.
- [5]唐忠,叶松青,杨言辰.黑龙江逊克高松山金矿成因模式[J].世界地质,2010,29(3):401-407.
- [6]李亚军,段晓君,王艳忠,等.高松山金矿床控矿特征、成因及找矿前景[J].中国西部科技,2010,09(30):10-13.
- [7]Clayton R N.The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis[J].Geochim et CosmochimActa,1963,27:43-52.
- [8]Clayton R N,O’Neil J R,Mayeda T K.Oxygen isotope exchange between quartz and water[J].Journal of Geophisical Research,1972,77(17):3057-3067.
- [9]O’Neil J R,Clayton R N,Mayeda T K.Oxygen isotope fractionation in divalent metal carbonates[J].The Journal of Chemical Physics,1969,51(12):5547-5558.
- [10]张理刚.稳定同位素在地质科学中的应用——金属活化热液成矿作用及找矿[M].西安:陕西科学技术出版社,1985:118.
- [11]刘建明,刘家军,郑明华,等.微细浸染型金矿床的稳定同位素特征与成因探讨[J].地球化学,1998,27(6):585-591.
- [12]Sheppard S M F.Identification of the origin of ore-forming solutions by the use of stable isotopes[A].Volcanic Processes in Ore Genesis,Anonymous[M].London:Inst-Mining Metallurg,1977:25-41.
- [13]Hedenquist J W,Lowenstern J B.The role of magmas in the formation of hydrothermal ore deposits[J].Nature,1994,370(18):519-527.
- [14]Ohmoto H,Rye R O.Isotopes of sulfur and carbon[A].Barnes H L.Geochemistry of Hydrothermal Ore Deposits(2nd Edition)[C].New York:John Wiley and Sons,1979:509-611.
- [15]Ohmoto H.Systematics of sulfur and carbon isotopes in hydrothermal ore deposit[J].Economic Geology,1972,67:551-578.
- [16]Zartman R E,Doe B R.Plumbotectonics,the Phanerozoic[A].Barnes H L.Geochemistry of Hydrothermal Ore Deposits[C].New York:John Wileyand Sons,1979:22-70.
- [17]Z artman R E,Doe B R.Plumbotectonics――the model(in evolution of the upper mantle)[J].Tectonophysics,1981,75(1-2):135-162.
- [18]朱炳泉,等.地球科学中同位素体系理论与应用——兼论中国大陆壳幔演化[M].北京:科学出版社,1998:224-226.
- [19]Doe B R,Stacey J S.The application of lead isotopes to the problems of ore genesis and ore prospect evaluation:A review[J].Economic Geology,1974,69(6):757-776.
- [20]Lindgren W.Mineral Deposits(4thedition)[M].New York:McGraw Hill,1933:1-930.
- [21]Heald P,Foley N K,Hayba D O.Comparative anatomy of volcanic-hosted epithermal deposits:Acid-sulfate and adularia-sericite types[J].Economic Geology,1987,82:1-26.
- [22]Cooke D R,Simmons S F.Characteristics and genesis of epithermal gold deposits[J].Reviews in Economic Geology,2000,13:221-244.
- [23]Cooke D R,Deyell C L.Descriptive names for epithermal deposits:Their implications for inferring fluid chemistry and ore genesis[A].Eliopouloset al.Proceedings of the Seventh Biennia lSGA Meeting-mineral Exploration and Sustainable Development[M].Rotterdam:Millpress SciencePublishers,2003:457-460.
- [24]Barnes H L.Geochemistry of Hydrothermal Ore Deposits[M].New York:John Wiley and Sons,1979:1-798.
- [25]Sandergeld C H,Turcoffe D L.A laboratory study of mineral deposition in a boiling environments[J].Economic Geology,1979,74:156-165.
- [26]郑明华,张寿庭,刘家军,等.西南天山穆龙套型金矿床产出地质背景与成矿机制[M].北京:地质出版社,2001:93-105.