希瓦氏奥奈达菌MR-1还原针铁矿的实验研究及地球化学意义Reduction of Goethite by Shewanella Oneidensis MR-1 and Its Geochemical Implication
欧阳冰洁;陆现彩;刘欢;李娟;陆建军;管思琪;王睿勇;
摘要(Abstract):
本文实验研究了希瓦氏奥奈达菌株(Shewanella oneidensis MR-1,以下简称MR-1)在pH为中性的厌氧条件下还原针铁矿的过程,探讨了MR-1菌异化还原针铁矿的动力学特征。采用邻菲罗啉分光光度法检测了反应前后溶液中铁含量的变化,利用扫描电子显微镜、粉晶X射线衍射和激光拉曼光谱分析了针铁矿及其还原产物的形貌特征和物相组成。结果表明,针铁矿在厌氧条件下可被MR-1还原,生成磁铁矿、菱铁矿等次生矿物。本文认为针铁矿的微生物异化还原过程以直接接触机制为主,同时存在间接还原机制;溶液中的Fe2+与CO32-、SO42-等沉淀生成菱铁矿等次生产物,同时部分Fe2+、Fe3+离子可吸附于矿物表面,甚至能引起矿物相的转化,两者共同构成了针铁矿的次生分解路径。
关键词(KeyWords): Shewanella oneidensis MR-1;针铁矿;次生矿化;还原机制
基金项目(Foundation): 国家自然科学基金(批准号:40930742;41272056;10979018);; 科技部973课题(编号:2007CB815603)
作者(Authors): 欧阳冰洁;陆现彩;刘欢;李娟;陆建军;管思琪;王睿勇;
DOI: 10.16461/j.cnki.1000-4734.2013.03.020
参考文献(References):
- [1]Roden E E,Zachara J M.Microbial reduction of crystalline iron(Ⅲ)oxides:influence of oxide surface area and potential for cell growth[J].Environmental Science and Technology,1996,30:1618-1628.
- [2]Zachara J M,Fredrickson J K,Li S-M,et al.Bacterial reduction of crystalline Fe(Ⅲ)oxides in single-phase suspensions and subsurface materials[J].American Mineralogist,1998,83:1426-1443.
- [3]Liu C,Kota S,Zachara J M,et al.Kinetic analysis of the bacterial reduction of goethite[J].Environmental Science and Technology,2001a,35:2482-2490.
- [4]Lovley D R.Dissimilatory Fe(Ⅲ)and Mn(Ⅳ)reduction[J].Microbiological Reviews,1991,55:259-287.
- [5]Nealson K H,Saffarini D.Iron and manganese in anaerobic respiration-environmental significance,physiology,and regulation[J].Annual Review ofMicrobiology,1994,48:311-343.
- [6]Baker B J,Banfield J F.Microbial communities in acid mine drainage[J].FEMS Microbiological Ecology,2003,44:139-152.
- [7]Chaudhuri S K,Lack J G,Coates J D.Biogenic magnetite formation through anaerobic biooxidation of Fe(Ⅱ)[J].Applied and EnvironmentalMicrobiology,2001,67:2844-2848.
- [8]Childers S E,Ciufo S,Lovley D R.Geobacter metallireducens accesses insoluble Fe(Ⅲ)oxide by chemotaxis[J].Nature,2002,416:767-769.
- [9]Fredrickson J K,Zachara J M,Kennedy D W,et al.Biogenic iron mineralization accompanying the dissimilatory reduction of hydrous ferric oxide bya groundwater bacterium[J].Geochimica et Cosmochimica Acta,1998,62:3239-3257.
- [10]Hansel C M,Benner S G,Neiss J,et al.Secondary mineralization pathways induced by dissimilatory iron reduction of ferrihydrite under advectiveflow[J].Geochimica et Cosmochimica Acta,2003,67(16):2977-2992.
- [11]Fredrickson J K,Romine M F,Beliaev A S,et al.Towards environmental systems biology of Shewanella[J].Nature Reviews Microbiology,2008,6(8):592-603.
- [12]Lloyd J R,Lovley D R,Macaskie L E.Biotechnological application of metal-reducing microorganisms[J].Advances in Applied Microbiology,2003,53:85-128.
- [13]Dubiel M,Hsu C H,Chien C C,et al.Microbial iron respiration can protect steel from corrosion[J].Applied and Environmental Microbiology,2002,68:1440-1445.
- [14]Bond D R,Lovley D R.Electricity production by Geobacter sulfurreducens attached to electrodes[J].Applied and Environmental Microbiology,2003,69:1548-1555.
- [15]丁振华,冯俊明.氧化铁矿物对重金属离子的吸附及其表面特征[J].矿物学报,2000,20(4):349-352.
- [16]丁振华,王明仕,冯俊明.天然铁(氢)氧化矿物对铜离子的吸附特征[J].矿物学报,2003,23(1):70-74.
- [17]刘欢,陆现彩,李磊,等.合成施威特曼石吸附Cu2+和Pb2+的实验研究[J].矿物学报,2011,31(4):668-675.
- [18]陆现彩,屠博文,朱婷婷,等.风化过程中矿物表面微生物附着现象及意义[J].高校地质学报,2011,17(1):21-28.
- [19]陆雅海,朱祖祥,袁可能,等.针铁矿对重金属离子的竞争吸附研究[J].土壤学报,1996,33(1):78-84.
- [20]栾兆坤,汤鸿霄.硫酸铁氧化物的表征及其对重金属吸附作用的研究[J].环境科学学报,1994,14(2):129-136.
- [21]Carpentier W,Smet L D,Beeumen J V,et al.Respiration and growth of Shewanella oneidensis MR-1 using vanadate as the sole electron acceptor[J].Journal of Bacteriology,2005,187(10):3293-3301.
- [22]Cruz-García C,Murray A E,Klappenbach J A,et al.Respiratory nitrate ammonification by Shewanella oneidensis MR-1[J].Journal ofBacteriology,2007,189(2):656-662.
- [23]Lies D P,Hernandez M E,Kappler A,et al.Shewanella oneidensis MR-1 uses overlapping pathways for iron reduction at a distance and by directcontact under conditions relevant for biofilms[J].Applied and Environmental Microbiology,2005,71:4414-4426.
- [24]Lovley D R,Holmes D E,Nevin K P.Dissimilatory Fe(Ⅲ)and Mn(Ⅳ)reduction[J].Advances in Microbial Physiology,2004,49:219-286.
- [25]Ruebush S S,Brantley S L,Tien M.Reduction of soluble and insoluble iron forms by membrane fractions of Shewanella oneidensis grown underaerobic and anaerobic conditions[J].Applied and Environmental Microbiology,2006,72(4):2925-2935.
- [26]Arnold R G,Hoffman M R,DiChristina T J,et al.Regulation of Dissimilatory Fe(Ⅲ)Reduction Activity inShewanella putrefaciens[J].Applied andEnvironmental Microbiology,1990,56(9):2811-2817.
- [27]Myers C R,Nealson K H.Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor[J].Science,1988,240:1319-1321.
- [28]Myers C R,Nealson K H.Respiration-linked proton translocation coupled to anaerobic reduction of manganese(Ⅳ)and iron(Ⅲ)inShewanella-putrefaciens MR-1[J].Journal of Bacteriology,1990,172(11):6232-6238.
- [29]Richardson D J.Bacterial respiration:a flexible process for a changing environment[J].Microbiology,2000,146:551-571.
- [30]Cooper D C,Picardal F W,Schimmelmann A,et al.Chemical and biological interactions during nitrate and goethite reduction by Shewanellaputrefaciens 200[J].Applied and Environmental Microbiology,2003,69(6):3517-3525.
- [31]Kukkadapu R K,Zachara J M,Smith S C,et al.Dissimilatory bacterial reduction of Al-substituted goethite in subsurface sediments[J].Geochimicaet Cosmochimica Acta,2001,65(17):2913-2924.
- [32]Lower S K,Hochella M F,Beveridge T J.Bacterial recognition of mineral surfaces:Nanoscale interactions between Shewanella andα-FeOOH[J].Science,2001,292:1360-1363.
- [33]Jiang X-C,Hu J-S,Fitzgerald L A,et al.Probing electron transfer mechanisms in Shewanella oneidensis MR-1 using a nanoelectrode platform andsingle-cell imaging[J].PNAS,2010,107(39):16806-16810.
- [34]朱维晃,臧辉,吴丰昌.微生物还原针铁矿胶体的动力学特征及其影响因素[J].中国环境科学,2011,31(5):820-827.
- [35]Weber K A,Achenbach L A,Coates J D.Microorganisms pumping iron:anaerobic microbial iron oxidation and reduction[J].Nature,2006,4:752-764.
- [36]Venkateswaran K,Moser D P,Dollhopf M E,et al.Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp.nov[J].International Journal of Systematic Bacteriology,1999,49:705-724.
- [37]Myers J M,Myers C R.Role of the tetraheme cytochrome Cym A in anaerobic electron transport in cells of Shewanella putrefaciens MR-1 withnormal levels of menaquinone[J].Journal of Bacteriology,2000,182(1):67-75.
- [38]Schwertmann U,Cornell R M.Iron Oxides in the Laboratory[D].WILEY-VCH Verlag GmbH,D-69469 Weinheim(Federal Republic of Germany),2000.
- [39]Zachara J M,Kukkadapu R K,Fredrickson J K,et al.Biomineralization of poorly crystalline Fe(Ⅲ)oxides by dissimilatory metal reducing bacteria[J].Geomicrobiology Journal,2002,19:179-207.
- [40]Liu C,Zachara J M,Gorby Y A,et al.Microbial reduction of Fe(Ⅲ)and sorption/precipitation of Fe(Ⅱ)onShewanella putrefaciens Strain CN32[J].Environmental Science and Technology,2001b,35:1385-1393.
- [41]Gorby Y A,Yanina S,McLean J S,et al.Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and othermicroorganisms[J].PNAS,2006,103:11358-11363.
- [42]Reguera G,McCarthy K D,Mehta T,et al.Extracellular electron transfer via microbial nanowires[J].Nature,2005,435:1098-1101.
- [43]Lovley D R,Coates J D,Blunt-Harris E L,et al.Humic substances as electron acceptors for microbial respiration[J].Nature,1996,382:445-448.
- [44]Nevin K P,Lovley D R.Mechanisms for accessiong insoluble Fe(Ⅲ)reduction by Geothrix fermentans[J].Applied and EnvironmentalMicrobiology,2002,68:2294-2299.
- [45]Nevin K P,Lovley D R.Mechanisms for Fe(Ⅲ)oxide reduction in sedimentary environments[J].Geomicrobiology Journal,2002,19:141-159.
- [46]Newman D K,Kolter R.A role for excreted quinines in extracellular electron transfer[J].Nature,2000,405:94-97.
- [47]Turick C E,Tisa L S,Caccavo F.Melanin production and use as a soluble electron shuttle for Fe(Ⅲ)oxide reduction and as a terminal electronacceptor by Shewanella algae BrY[J].Applied and Environmental Microbiology,2002,68:2436-2444.
- [48]Hernandez M E,Kappler A,Newman D K.Phenazines and other redox-active antibiotics promote microbial mineral reduction[J].Applied andEnvironmental Microbiology,2004,70:921-928.
- [49]Nevin K P,Lovley D R.Potential for nonenzymatic reduction of Fe(Ⅱ)via electron shuttling in subsurface sediments[J].Environmental Scienceand Technology,2000,34:2472-2478.
- [50]Hernandez M E,Newman D K.Extracellular electron transfer[J].Cellular and Molecular Life Sciences,2001,58:1562-1571.
- [51]Coates J D,Cole K A,Chakraborty R,et al.The diversity and ubiquity of bacteria utilizing humic substances as an electron donor for anaerobicrespiration[J].Applied and Environmental Microbiology,2002,68:2445-2452.
- [52]Lovley D R,Fraga J L,Coates J D,et al.Humics as an electron donor for anaerobic respiration[J].Environmental Microbiology,1999,1:89-98.
- [53]Cornell R M,Schwertmann U.The Iron Oxides:Structure,Properties,Reactions,Ocurrences and Uses[D].Weinheim:WILEY-VCH,2000.
- [54]Lack J G,Chaudhuri S K,Kelly S D,et al.Immobilization of radionuclides and heavy metals through anaerobic biooxidation of Fe(Ⅱ)[J].Appliedand Environmental Microbiology,2002,68:2704-2710.
- [55]Straub K L,Benz M,Schink B,et al.Anaerobic,nitrate-dependent microbial oxidation of ferrous iron[J].Applied and Environmental Microbiology,1996,62:1458-1460.
- [56]金鑫,王进,陈天虎,岳正波,金杰.铁氧化物对硫酸盐还原菌分解硫酸盐矿物的协同作用[J].矿物学报,2010,30(3):343-348.
- [57]归显扬,陈天虎,周跃飞,姚敦璠,何光亚,张楠,黎少杰.赤铁矿和氧化镁对养殖粪污厌氧发酵气体中H2S的抑制[J].矿物学报,2011,31(4):732-737.