鲁西贺家沟二长闪长玢岩成矿岩体:锆石年代学和微量元素证据The ore-forming monzodiorite in the Hejiagou area of the western Shandong: Evidences from chronology and trace elements of zircons
武斌;董美川;李明波;张海瑞;刘继勇;
摘要(Abstract):
贺家沟地区位于山东省西部沂南县南约20 km,地处郯庐断裂带西侧的沂山凸起东南缘,区域上已经发现了沂南金场和铜井两处金及多金属矿床。贺家沟地区处于沂南金场、铜井矿区外围地区,成矿条件非常相似,近几年在该地区的地球物理、地球化学勘查找矿工作也指示其具有较好成矿潜力,并在该地区发现多处金多金属矿点。本次研究尝试运用贺家沟地区二长闪长玢岩锆石微区成分来解释成矿岩体的构造环境、岩浆演化特征以及区内成矿作用。LA-ICP-MS锆石U-Pb年代学显示贺家沟二长闪长玢岩加权平均年龄为(128±0.43) Ma,为早白垩世。锆石结晶温度为662~734℃,锆石中Th/U比值为0.71~1.40,表示锆石均为岩浆型锆石;锆石Sc/Yb为0.40~0.92,U/Yb为0.48~1.48,Th/Yb为0.43~1.75,指示其岩浆具有大陆弧型和大陆花岗质岩浆特征。锆石w(Pb)为3.62×10(-6)~20.06×10(-6)~20.06×10(-6),w(Th)为116.6×10(-6),w(Th)为116.6×10(-6)~1023.0×10(-6)~1023.0×10(-6),显示I型花岗岩特征,即为壳幔混合成因;锆石Eu/Eu(-6),显示I型花岗岩特征,即为壳幔混合成因;锆石Eu/Eu*为0.434~0.681,Ce/Ce*为0.434~0.681,Ce/Ce*为16.450~408.509,表明其具有很好的斑岩型铜金矿成矿潜力。
关键词(KeyWords): 二长闪长玢岩;锆石;U-Pb地质年代学;微量元素;鲁西贺家沟地区
基金项目(Foundation): 山东省地勘基金项目(编号:鲁勘字[2016]43号;鲁勘字[2018]36号;鲁勘字[2020]16号);; 山东省地质矿产勘查开发局科技创新项目(编号:鲁地字[2021]6号)联合资助
作者(Authors): 武斌;董美川;李明波;张海瑞;刘继勇;
DOI: 10.16461/j.cnki.1000-4734.2022.42.070
参考文献(References):
- [1]Andersen T.Detrital zircons as tracers of sedimentary provenance:limiting conditions from statistics and numerical simulation[J].Chemical Geology,2004,216(3/4):249-270.
- [2]Gehrels G,Kapp P,DeCelles P,et al.Detrital zircon geochronology of pre‐Tertiary strata in the Tibetan-Himalayan orogen[J].Tectonics,2011,30(5):2-15.
- [3]El-Bialy M Z,Ali K A.Zircon trace element geochemical constraints on the evolution of the Ediacaran (600-614 Ma) post-collisional Dokhan Volcanics and Younger Granites of SE Sinai,NE Arabian-Nubian Shield[J].Chemical Geology,2013,360:54-73.
- [4]Grimes C B,John B E,Cheadle M J,et al.On the occurrence,trace element geochemistry,and crystallization history of zircon from in situ ocean lithosphere[J].Contributions to Mineralogy and Petrology,2009,158(6):757-783.
- [5]Hoskin P W O,Schaltegger U.The composition of zircon and igneous and metamorphic petrogenesis[J].Reviews in mineralogy and geochemistry,2003,53(1):27-62.
- [6]Ewing T A,Hermann J,Rubatto D.The robustness of the Zr-in-rutile and Ti-in-zircon thermometers during high-temperature metamorphism(Ivrea-Verbano Zone,northern Italy)[J].Contributions to Mineralogy and Petrology,2013,165(4):757-779.
- [7]Watson E B,Wark D A,Thomas J B.Crystallization thermometers for zircon and rutile[J].Contributions to Mineralogy and Petrology,2006,151(4):413-433.
- [8]El-Bialy M Z,Ali K A.Zircon trace element geochemical constraints on the evolution of the Ediacaran (600-614 Ma) post-collisional Dokhan Volcanics and Younger Granites of SE Sinai,NE Arabian-Nubian Shield[J].Chemical Geology,2013,360:54-73.
- [9]Wu Y,Zheng Y.Genesis of zircon and its constraints on interpretation of U-Pb age[J].Chinese Science Bulletin,2004,49(15):1554-1569.
- [10]Wang Q,Zhu D C,Zhao Z D,et al.Magmatic zircons from I-,S-and A-type granitoids in Tibet:Trace element characteristics and their application to detrital zircon provenance study[J].Journal of Asian Earth Sciences,2012,53:59-66.
- [11]Belousova E A,Griffin W L,O'Reilly S Y,et al.Igneous zircon:trace element composition as an indicator of source rock type[J].Contributions to mineralogy and petrology,2002,143(5):602-622.
- [12]Grimes C B,John B E,Kelemen P B,et al.Trace element chemistry of zircons from oceanic crust:A method for distinguishing detrital zircon provenance[J].Geology,2007,35(7):643-646.
- [13]赵一鸣,丰成友,李大新.中国矽卡岩矿床找矿新进展和时空分布规律[J].矿床地质,2017,36(3):519-543.
- [14]许文良,王清海,王冬艳,等.华北克拉通东部中生代岩石圈减薄的过程与机制:中生代火成岩和深源捕虏体证据[J].地学前缘,2004(3):309-317.
- [15]宋明春,艾宪森,于学峰,等.山东省矿产资源类型和时空分布特点[J].矿床地质,2015,34(6):1237-1254.
- [16]董树义.山东沂南金矿床成因与成矿规律和成矿预测[D].北京:中国地质大学(北京),2008.
- [17]王永,范宏瑞,胡芳芳,等.鲁西沂南铜井闪长质岩体锆石U-Pb年龄、元素及同位素地球化学特征[J].岩石矿物学杂志,2011,30(4):553-566.
- [18]刘玉强.山东省金矿床成矿系列及成矿规律[J].矿产与地质,2004(1):1-7.
- [19]金振奎,刘泽容,石占中.鲁西地区断裂构造类型及其形成机制[J].石油大学学报(自然科学版),1999(5):1-5.
- [20]武斌,孙天柱,张海瑞,等.沂南贺家沟地区化探异常特征及找矿方向研究[J].山东国土资源,2020,36(10):28-33.
- [21]武斌,张海瑞,邹双英,等.山东沂南县贺家沟地区金铜多金属矿成矿规律与成矿模式[J].矿产与地质,2021,35(1):39-49.
- [22]Zhang H F,Sun M,Zhou X H,et al.Geochemical constraints on the origin of Mesozoic alkaline intrusive complexes from the North China Craton and tectonic implications[J].Lithos,2004,81(1/2/3/4):297-317.
- [23]Lan T G,Fan H R,Hu F F,et al.Multiple crust-mantle interactions for the destruction of the North China Craton:geochemical and Sr-Nd-Pb-Hf isotopic evidence from the Longbaoshan alkaline complex[J].Lithos,2011,122(1/2):87-106.
- [24]赵鹏大,陈永清.基于地质异常单元金矿找矿有利地段圈定与评价[J].地球科学,1999(5):443-448.
- [25]Grimes C B,Wooden J L,Cheadle M J,et al.“Fingerprinting”tectono-magmatic provenance using trace elements in igneous zircon[J].Contributions to Mineralogy and Petrology,2015,170(5):1-26.
- [26]Dubińska E,Bylina P,Koz?owski A,et al.U-Pb dating of serpentinization:hydrothermal zircon from a metasomatic rodingite shell (Sudetic ophiolite,SW Poland)[J].Chemical Geology,2003,203(3/4):183-203.
- [27]Geisler T,Ulonska M,Schleicher H,et al.Leaching and differential recrystallization of metamict zircon under experimental hydrothermal conditions[J].Contributions to Mineralogy and Petrology,2001,141(1):53-65.
- [28]Li H,Watanabe K,Yonezu K.Zircon morphology,geochronology and trace element geochemistry of the granites from the Huangshaping polymetallic deposit,South China:Implications for the magmatic evolution and mineralization processes[J].Ore Geology Reviews,2014,60:14-35.
- [29]Rubatto D.Zircon:the metamorphic mineral[J].Reviews in mineralogy and geochemistry,2017,83(1):261-295.
- [30]Zhang X W,Xiang H,Zhong Z Q,et al.U-Pb dating and trace elements composition of hydrothermal zircons from Jianfengling granite,Hainan:Restriction on the age of hydrothermal event and mineralization of Baolun gold deposit[J].Earth Science,2009,34(6):921-930.
- [31]Barbey P,AlléP,Brouand M,et al.Rare-earth patterns in zircons from the Manaslu granite and Tibetan Slab migmatites (Himalaya):insights in the origin and evolution of a crustally-derived granite magma[J].Chemical Geology,1995,125(1/2):1-17.
- [32]Cavosie A J,Valley J W,Wilde S A.Correlated microanalysis of zircon:Trace element,δ18O,and U-Th-Pb isotopic constraints on the igneous origin of complex>3900 Ma detrital grains[J].Geochimica et Cosmochimica Acta,2006,70(22):5601-5616.
- [33]Hoskin P W O.Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills,Australia[J].Geochimica et cosmochimica acta,2005,69(3):637-648.
- [34]Fu B,Mernagh T P,Kita N T,et al.Distinguishing magmatic zircon from hydrothermal zircon:a case study from the Gidginbung high-sulphidation Au-Ag-(Cu) deposit,SE Australia[J].Chemical Geology,2008,259(3/4):131-142.
- [35]Ferry J M,Watson E B.New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers[J].Contributions to Mineralogy and Petrology,2007,154(4):429-437.
- [36]Moecher D P,McDowell S M,Samson S D,et al.Ti-in-zircon thermometry and crystallization modeling support hot Grenville granite hypothesis[J].Geology,2014,42(3):267-270.
- [37]Hu J,Jiang N,Fan W,et al.Comparison of metamorphic zircons from granulite xenoliths and granulite terrain in northern North China Craton[J].Precambrian Research,2017,303:414-427.
- [38]Wu T,Xiao L,Ma C.U-Pb geochronology of detrital and inherited zircons in the Yidun arc belt,eastern Tibet Plateau and its tectonic implications[J].Journal of Earth Science,2016,27(3):461-473.
- [39]Sun S S,McDonough W F.Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J].Geological Society,London,Special Publications,1989,42(1):313-345.
- [40]Hawkesworth C J,Kemp A I S.Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution[J].Chemical Geology,2006,226(3-4):144-162.
- [41]Yang J,Cawood P A,Du Y,et al.Large Igneous Province and magmatic arc sourced Permian-Triassic volcanogenic sediments in China[J].Sedimentary Geology,2012,261:120-131.
- [42]Jiang Y H,Jiang S Y,Ling H F,et al.Petrogenesis and tectonic implications of Late Jurassic shoshonitic lamprophyre dikes from the Liaodong Peninsula,NE China[J].Mineralogy and Petrology,2010,100(3):127-151.
- [43]Xu Y G,Huang X L,Ma J L,et al.Crust-mantle interaction during the tectono-thermal reactivation of the North China Craton:constraints from SHRIMP zircon U-Pb chronology and geochemistry of Mesozoic plutons from western Shandong[J].Contributions to Mineralogy and Petrology,2004,147(6):750-767.
- [44]Gao S,Rudnick R L,Yuan H L,et al.Recycling lower continental crust in the North China craton[J].Nature,2004,432(7019):892-897.
- [45]Yang J,Cawood P A,Du Y,et al.Large Igneous Province and magmatic arc sourced Permian-Triassic volcanogenic sediments in China[J].Sedimentary Geology,2012,261:120-131.
- [46]崔芳华,徐学纯,郑常青,等.华北克拉通东部古太平洋板块俯冲与回撤作用:来自辽西兴城地区晚中生代花岗质岩石的记录与启示[J].岩石学报,2020,36(8):2463-2492.
- [47]Burnham A D,Berry A J.An experimental study of trace element partitioning between zircon and melt as a function of oxygen fugacity[J].Geochimica et Cosmochimica Acta,2012,95:196-212.
- [48]Trail D,Watson E B,Tailby N D.Ce and Eu anomalies in zircon as proxies for the oxidation state of magmas[J].Geochimica et Cosmochimica Acta,2012,97:70-87.
- [49]Loader M A,Wilkinson J J,Armstrong R N.The effect of titanite crystallisation on Eu and Ce anomalies in zircon and its implications for the assessment of porphyry Cu deposit fertility[J].Earth and Planetary Science Letters,2017,472:107-119.
- [50]Sillitoe R H.Porphyry copper systems[J].Economic geology,2010,105(1):3-41.
- [51]Wilkinson J J.Triggers for the formation of porphyry ore deposits in magmatic arcs[J].Nature Geoscience,2013,6(11):917-925.
- [52]Ballard J R,Palin M J,Campbell I H.Relative oxidation states of magmas inferred from Ce (IV)/Ce (III) in zircon:application to porphyry copper deposits of northern Chile[J].Contributions to Mineralogy and Petrology,2002,144(3):347-364.
- [53]Liang H Y,Campbell I H,Allen C,et al.Zircon Ce4+/Ce3+ratios and ages for Yulong ore-bearing porphyries in eastern Tibet[J].Mineralium Deposita,2006,41(2):152-159.
- [54]Zhang H,Li C Y,Yang X Y,et al.Shapinggou:the largest Climax-type porphyry Mo deposit in China[J].International Geology Review,2014,56(3):313-331.
- [55]Wang F,Liu S A,Li S,et al.Contrasting zircon Hf-O isotopes and trace elements between ore-bearing and ore-barren adakitic rocks in central-eastern China:implications for genetic relation to Cu-Au mineralization[J].Lithos,2013,156:97-111.
- [56]Chelle-Michou C,Chiaradia M,Ovtcharova M,et al.Zircon petrochronology reveals the temporal link between porphyry systems and the magmatic evolution of their hidden plutonic roots (the Eocene Coroccohuayco deposit,Peru)[J].Lithos,2014,198:129-140.
- [57]Cocker H A,Valente D L,Park J W,et al.Using platinum group elements to identify sulfide saturation in a porphyry Cu system:the El Abra porphyry Cu deposit,Northern Chile[J].Journal of Petrology,2015,56(12):2491-2514.
- [58]Dilles J H,Kent A J R,Wooden J L,et al.Zircon compositional evidence for sulfur-degassing from ore-forming arc magmas[J].Economic Geology,2015,110(1):241-251.
- [59]Shen P,Hattori K,Pan H,et al.Oxidation condition and metal fertility of granitic magmas:Zircon trace-element data from porphyry Cu deposits in the Central Asian orogenic belt[J].Economic Geology,2015,110(7):1861-1878.
- [60]Lu Y,Loucks R,Fiorentini M,et al.Zircon compositions as a pathfinder for porphyry Cu±Mo±Au deposits[J].Society of Economic Geologists.Special Publications Series,2016,19:329-347.
- [61]Claiborne L L,Miller C F,Wooden J L.Trace element composition of igneous zircon:a thermal and compositional record of the accumulation and evolution of a large silicic batholith,Spirit Mountain,Nevada[J].Contributions to Mineralogy and Petrology,2010,160(4):511-531.
- [62]Lee R G,Dilles J H,Tosdal R M,et al.Magmatic evolution of granodiorite intrusions at the El Salvador porphyry copper deposit,Chile,based on trace element composition and U/Pb age of zircons[J].Economic Geology,2017,112(2):245-273.
- [63]Munoz M,Charrier R,Fanning C M,et al.Zircon trace element and O-Hf isotope analyses of mineralized intrusions from El Teniente ore deposit,Chilean Andes:constraints on the source and magmatic evolution of porphyry Cu-Mo related magmas[J].Journal of Petrology,2012,53(6):1091-1122.
- [64]Rabbia O M,Hernández L B,French D H,et al.The El Teniente porphyry Cu-Mo deposit from a hydrothermal rutile perspective[J].Mineralium Deposita,2009,44(8):849-866.
- [65]Ballard J R,Palin M J,Campbell I H.Relative oxidation states of magmas inferred from Ce (IV)/Ce (III) in zircon:application to porphyry copper deposits of northern Chile[J].Contributions to Mineralogy and Petrology,2002,144(3):347-364.
- [66]Buret Y,von Quadt A,Heinrich C,et al.From a long-lived upper-crustal magma chamber to rapid porphyry copper emplacement:Reading the geochemistry of zircon crystals at Bajo de la Alumbrera (NW Argentina)[J].Earth and Planetary Science Letters,2016,450:120-131.
- [67]Chelle-Michou C,Chiaradia M,Ovtcharova M,et al.Zircon petrochronology reveals the temporal link between porphyry systems and the magmatic evolution of their hidden plutonic roots (the Eocene Coroccohuayco deposit,Peru)[J].Lithos,2014,198:129-140.
- [68]Wang F,Liu S A,Li S,et al.Contrasting zircon Hf-O isotopes and trace elements between ore-bearing and ore-barren adakitic rocks in central-eastern China:implications for genetic relation to Cu-Au mineralization[J].Lithos,2013,156:97-111.
- [69]Zhang H,Li C Y,Yang X Y,et al.Shapinggou:the largest Climax-type porphyry Mo deposit in China[J].International Geology Review,2014,56(3):313-331.
- [70]Liang H Y,Campbell I H,Allen C,et al.Zircon Ce4+/Ce3+ratios and ages for Yulong ore-bearing porphyries in eastern Tibet[J].Mineralium Deposita,2006,41(2):152-159.
- [71]Shen P,Hattori K,Pan H,et al.Oxidation condition and metal fertility of granitic magmas:Zircon trace-element data from porphyry Cu deposits in the Central Asian orogenic belt[J].Economic Geology,2015,110(7):1861-1878.
- [72]Iizuka T,Komiya T,Rino S,et al.Detrital zircon evidence for Hf isotopic evolution of granitoid crust and continental growth[J].Geochimica et Cosmochimica Acta,2010,74(8):2450-2472.